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In this paper we demonstrate that multi-modal probability distribution functions
(PDFs) may be efficiently sampled using an algorithm originally developed for nu-
merical integration by Monte Carlo methods. This algorithm can be used to generate
an input PDF which can be used as an independence sampler in a Metropolis–Hastings
chain to sample otherwise troublesome distributions. Some examples in one, two, and
five dimensions are worked out. We also comment on the possible application of our
results to event generation in high-energy physics simulations.c© 1999 Academic Press
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The key to solving a wide range of optimisation problems in science and engineering
lies in being able to efficiently sample a (possibly very complex) probability distribution
function (PDF) in one or more dimensions. In many cases of interest, this requires inverting
an integral which may not be possible by analytical or semi-analytical means. In such
circumstances, efficient computer algorithms are crucial. The perhaps best known such
algorithm is the Metropolis algorithm [1], which can in principle be used to generate an
accurate sample from any PDF no matter how complex, by a guided random walk. However,
the Metropolis algorithm is potentially inefficient when confronted with a PDF with multiple
modes, or peaks, especially if they are well separated. As is well known, a very large number
of random steps may be needed to locate a new mode, once one mode has been discovered,
leading to a dramatic drop in the efficiency of the scheme. In this paper we will show how
this problem can be circumvented in a certain class of problems.

In order to make the subsequent discussion more clear, we will present a brief analysis
of the weakness of the Metropolis scheme outlined in the previous paragraph. LetX i be
some randomly choosen point in the space where the PDF of interest5 (not necessarily
normalised) is to be sampled. A new pointX f at a distanceδ from X i is choosen and the
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ratio5(X f )/5(X i ) is evaluated. If this ratio is larger than one, then the moveX i →X f

is accepted. Otherwise it is accepted with probability5(X f )/5(X i ). As can be imagined,
locating a single peak of5 can be easily accomplished. However, moving from one peak
to another separated by a distance which is large compared with the step sizeδ may require
a long succession of steps “against the grain”; the net probability of such a sequence is
sometimes so small that a prohibitively large number of trials may be needed in order to
establish the existence of the second peak. This, in a nutshell, is the reason for the potential
inefficiency of the Metropolis algorithm alluded to earlier.

One plausible remedy, varyingδ with each move, has been incorporated into the
Metropolis–Hastings algorithm [2], where the sequence of steps is made on the basis of a
proposal distribution. If the proposal distribution mimics5, then all the peaks of5may be
found without difficulty. However, without prior knowledge of the separation between the
peaks of5, it is difficult to make a suitable choice for the proposal distribution. In other
words,5 must be mapped out globally in the region of interestbeforeit has even been
studied. This requirement may appear to present an insurmountable obstacle to the use of
the Metropolis–Hastings algorithm; the rest of this paper deals with methodology that we
have developed to deal with this problem.

The key to our approach is the observation that the global structure of5 is required for
another seemingly different problem, the evaluation of the definite integral of5 over the
region of interest. One technique for doing so which is easily adapted to integrands of higher
dimensions is adaptive Monte Carlo integration. A number of points are thrown at random
along the boundaries of the region of interest (defining a grid) and the function is evaluated
between the grid points. This process is repeated; however, the second time around the grid
from the first iteration is refined so that it is finer in regions where the function is larger and
coarser where the function is smaller. On the third iteration, the grid previously obtained is
further refined, and so on. After a suitable number of iterations a reliable estimate of the
integral may be obtained for a large class of integrands of interest. Several different variants
of this basic algorithm have been developed; we use the VEGAS algorithm [3]. In VEGAS
the grid points are used to subdivide the axes into a maximum of 50 bins.1 Although the
bin boundaries are defined along the edges of the region of integration, they may be used to
break up the entire region of integration into a number of hypercubes. Ideally, the boundaries
of the hypercubes are such that5 integrated over each hypercube gives the same contribu-
tion to the definite integral of5 over the region of interest. Smaller hypercubes would then
correspond to regions where5 is large, and larger hypercubes to regions where5 is small.

Quite apart from the definite integral, the grid information may also be used to de-
fine a PDFP which roughly mimics5. Sampling fromP is straightforward; hypercubes
are picked at random in such a way that the probability of picking any given hypercube
is the same for all hypercubes, and a random number is used to locate a pointX in the
hypercube by uniform sampling.P is defined so that it is the same for all points in a given
hypercube, and the value ofP in a hypercube of volume1V is 1

1V . More specifically,
in one dimension a random number is used to pick a bin along thex axis in such a way
that the probability of picking any bin is the same. Then a second random number is used
to pick a point within the bin, all points within the bin being sampled uniformly.1V is
the bin width, soP for the point chosen is defined as the inverse of the width of the bin
in which the point is located, independent of the precise point choosen in the bin. In two

1 We have turned off the stratified sampling option in VEGAS, ensuring that there are 50 bins along each axis.
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dimensions two random numbers are used to pick an area element, and another two random
numbers are used to pick a point in the area element.1V is now the area, soP at the
point chosen is defined to be the inverse of the area element. In effect, we have sampled the
function globally and have used VEGAS to adaptively construct a PDFP which is different
from5 but which nonetheless mimics5. This procedure can obviously be generalised to
arbitrarily high dimensions. Regions where5 is large (small) correspond to regions where
1V is small (large) and hence to regions whereP is large (small).

Our strategy for sampling from5 amounts to setting up a Metropolis–Hastings chain
usingP as a proposal distribution. From the discussion in the previous paragraph it is clear
that regions where5 are large are more likely to be selected than where5 is small. A move
X i →X f is accepted (rejected) if

5(X f )

P(X f )
× P(X i )

5(X i )
> rn(<rn), (1)

where rn is a random number uniformly distributed between 0 and 1. Essentially, we are
usingP as an independence sampler for5. This method does preserve the condition of
detailed balance and the stationary distribution of the resulting Markov Chain does indeed
correspond to5 [4]. It is worth mentioning that in calculating sample averages not only
accepted but also rejected points need to be taken into account. Note that the fixed step
sizeδ plays no role whatsoever; ratherδ varies from move to move tuned to the separation
between the peaks of5. One potential objection to this scheme is that the function must
be evaluated a large number of times by VEGAS before a random sample can be drawn
from it and it is not obvious whether the number of function evaluations needed is less than
would be required in an approach with fixed step size. This objection will be addressed in
the examples we consider.

The first and simplest example we consider is a mixture of univariate Gaussians defined
on the interval [0, 22]. The precise function5 is given by

0.5{N (x, 3, 1)} + 0.2{N (x, 14, .025)} + 0.3{N (x, 19, .75)}, (2)

whereN (x, x̄, σ 2)denotes a univariate Gaussian with meanx̄ and varianceσ 2. This function
clearly has well-separated multiple peaks; generating a sample from a PDF of this kind is
thus liable to be problematic.

The first step in our approach is to integrate5 with VEGAS, preserving the grid infor-
mation generated by VEGAS. In this case the grid information is a set of 50 points in the
interval [0, 22]. The points define bins which are such that the contribution to the definite
integral from each bin is nearly equal. As expected, the bins are narrow (wide) where the in-
tegrand is large (small).5 was evaluated 2500 times for this purpose and a grid reflecting
the peaks in5 was used to generate bins of varying widths. These bins were used to define
P in the interval [0, 22] along the lines just described.P thus obtained has been plotted in
Fig. 1; the correspondence between Fig. 1 and Eq. (2) is striking.

The next step is to generate a sample from5 usingP as an independence sampler. The
acceptance rate of the Metropolis–Hastings chain is remarkably high, about 80%; i.e., about
80% of the moves were accepted using the criterion defined in Eq. (1). This is desirable
from the point of view of minimising CPU time and reflects the accuracy with whichP
mimics the underlying distribution5 defined in Eq. (2). In all,5 was evaluated a total of
15,000 times to generate a sample. We have checked that the average value of the random
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FIG. 1. P corresponding to Eq. (2).

variable as well as a number of higher moments is correctly reproduced, within statistical
error bars. To ensure that this agreement is not a fluke and to check convergence we used
a number of independent chains with independent starting points to get a sample of the
various moments; for all the moments we checked the sample standard deviation was never
more than a few percent of the moments.

This implies not only that all peaks have been discovered but, crucially, that the relative
weights of all the peaks have also been correctly reproduced. By way of comparison,
we have checked that running a Metropolis chain with5 evaluated over 100,000 times
(6 times more than with the independence sampler) with fixed step size does not convincingly
reproduce even the first two moments. The advantage of our approach is clear; the additional
cost in function evaluations needed to set up the grid is compensated for by the ease with
which the different peaks in the distribution are sampled.

We now go on to two-dimensional examples. Here a complication arises; in dimensions
larger than one the VEGAS algorithm implicitly assumes thatP is factorisable; i.e.,P
may be accurately represented in the formP = pi (xi )pj (xj ) · · ·. For many functions of
interest this is a reasonable approximation; however, if the function has a peak along a
lower dimensional hypersurface other than a co-ordinate axis, this approximation may be a
poor one. In particular, the VEGAS algorithm performs poorly if the function (assumed to
be defined in a hypercube) has a peak along a diagonal of the hypercube. However, this does
not mean that the distributionP generated from the VEGAS grid cannot be used to sample
from 5. All that happens is that the acceptance rate of the resulting Metropolis chain is
lower. To illustrate this point, we consider a mixture of two bivariate Gaussians in a square
whose means lie along a diagonal. The precise function is defined below,

5 = 0.7{G(x, y, 4, 4, 1, 1, 0.8)} + 0.3{G(x, y, 12, 12, 1, 1,−0.8)}, (3)
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whereG(x, y, µx, µy, σx, σy, ρ) is defined by

1

2πσxσy

√
1− ρ2

exp
−1

2(1− ρ2)

[
(x − µx)

2

σ 2
x

+ (y− µy)
2

σ 2
y

− 2ρ(x − µx)(y− µy)

σxσy

]
.

The region of integration is a (16× 16) square with one corner at the origin and sides along
the positivex andy axes. This function is not well suited to evaluation by VEGAS as both
peaks lie along a diagonal of the square, and this is reflected in the fact that the acceptance rate
of the Metropolis–Hastings chain is only approximately 23%. However, the grid information
does correctly reflect the location of both peaks, as was verified by the fact that both〈x〉 and
〈y〉 were reproduced to within a few percent of the true values. This in itself is significant
as both〈x〉 and〈y〉 for 5 defined above are located where5 essentially vanishes. These
values thus could not have been reproduced to any reasonable accuracy had only one peak
been found. As a further check we have also considered higher moments, i.e.,〈xnym〉,
where(m+ n)≤ 6,m, n= 0, 1, 2, . . .. Once again we used multiple independent chains
with independent starting points as a cross-check on the moments. The values for the var-
ious moments deviated from the true values from a few percent (for the lower moments)
to substantially more for higher moments, as would be expected. As a check, we have
considered another function,

5 = 0.7{G(x, y, 4, 4, 1, 1, 0.8)} + 0.3{G(x, y, 12, 4, 1, 1,−0.8)},

which differs from the bivariate Gaussian in Eq. (3) in that both peaks now lie along a
line parallel to thex axis. Once again, grid information is used to generate a sample from
which correct moments can be recovered. This time though, due to the more favourable
location of the peaks, the acceptance rate is almost twice as high as previously. We see
again that an adaptive Monte Carlo approach can generate an independence sampler for
a Metropolis–Hastings chain even when the target distribution5 is two dimensional and
has well-separated modes. It is worth pointing out that modifying5 by the introduction of
stepping stone distributions [5] has been suggested as a means to facilitate sampling PDFs
of this nature; in our approach no such modifications are necessary.

We conclude with a discussion of the relevance of our methods for event generation
in experimental high-energy physics simulations, where a sample from a potentially very
complicated differential scattering cross section dependent on more than two variables is
required. If analytic inversion is not possible (as is often the case), another approach such
as rejection sampling is needed. This however requires an enveloping distribution which
must be somehow obtained, either by guesswork or possibly by using the VEGAS grid
information [6]. While it is relatively easy to make an educated guess for a candidate
enveloping distribution, there is no foolproof way to construct an enveloping distribution
which envelops the function atall points in the region of integration. This can be problematic
at points where the function is larger than the proposed enveloping distribution. Rescaling
the enveloping distribution at such points would require that all hitherto accepted points
be reexamined to see if they would still be accepted with the rescaled distribution. Even if
no such points are encountered, in the absence of any rigorous proof that the enveloping
distribution truly envelops there is also no rigorous proof that the points in the generated
sample are truly representative.

Alternatively, the grid information may be used to construct an importance sampler for
a Metropolis–Hastings chain which can be used to generate events. Let us emphasise that
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this approach is radically different from that proposed in [6]. In particular, the asymptotic
convergence of the Markov Chain towards the function of interest is independent of whether
or not the importance sampler is larger than the function of interest over the entire region of
integration. Thus there is no need to modify the grid at any time and none of the complications
due to an imperfect choice of enveloping function arise. It is also worth pointing out that
rejection sampling with an enveloping distribution which does not envelop everywhere can
be made rigorous by using an acceptance probability similar to that in the Metropolis–
Hastings algorithm [7].

To test this in practise, we have considered the example of anomalous singlet production
in futureγ γ colliders, followed byt→ blν evaluated in the narrow width approximation for
thet andW [8]. The five-dimensional phase space has been integrated over with VEGAS and
the resulting grid was used as an importance sampler to generate events along the lines of the
previous examples. Neglecting the effects of cuts, smearing, and hadronisation, we obtained
an acceptance rate of about 75%, even though no attempt whatsoever was made to optimise
the grid. In particular, our sampling did not make any use of simplifications resulting either
from the use of the narrow width approximation or from the(V − A) structure of weak
decays.

However, this example is oversimple as the phase space is factorisable. To see what
happens when this is not necessarily true, we have considered radiative production of
ν pairs at LEP 2, more preciselye+e−→ ν̄eν̄eγ at

√
s= 195 GeV. The helicity ampli-

tudes for this process (in the limit of zero electron mass) may be found in [9]. In order
to avoid singularities we have restricted the phase space to the region whereEγ > 5 GeV
and require that the photon make an angle of at least 20◦ with the beampipe. We have
included theW exchange amplitudes and the fullZ propagator, so the phase space is no
longer factorisable. There are forward and backward peaks in the photon angle as well
as a peak in the invariant mass of the ¯νν pair. Thus, there is a wealth of structure in the
distribution from which we wish to sample. As with our previous example, we have set
up an independence sampler using the VEGAS grid and have generated events from a
Metropolis–Hastings chain. The acceptance probability was about 50%. As we made no
use of our prior knowledge of the Breit–Wigner structure of theZ propagator or of the
peaks in the photon angle distribution or of the flat distribution in the azimuthal angle about
the beam axis, this acceptance probability is probably the minimum that could be acchieved
but is still encouragingly high. Fifty chains starting from independent points in the five-
dimensional phase space each with 100 events were simulated. To assess the convergence
of the chains, we compared the variances of a number of observables in each chain with the
variances for the same observables between chains, along the lines of [10]. The estimated
potential scale reduction as defined in [10] was never more than 1.1, giving us reason to
believe that the chains were overlapping and that stationarity and thus convergence was
reached.

This suggests that the methods we have outlined may be worthwhile incorporating into
event generators for high-energy physics, at least in instances when the phase space can
be integrated over with VEGAS. It is significant that with Markov chain Monte Carlo
methods it is feasible to quantify the extent to which the chain is believed to have converged
(using the analysis of [10], for example), possibly making precise estimates of Monte Carlo
error easier than with more conventional rejection methods. Quite apart from the relative
efficiency (or lack of it) of our techniques compared with more conventional rejection
schemes we have described a procedure which is complementary to rejection schemes with
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independent sources of error, which may thus provide a useful cross-check on the accuracy
of rejection schemes.
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